| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vrgpfval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 2 |  | vrgpfval.u |  |-  U = ( varFGrp ` I ) | 
						
							| 3 | 1 2 | vrgpfval |  |-  ( I e. V -> U = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ) | 
						
							| 4 | 3 | fveq1d |  |-  ( I e. V -> ( U ` A ) = ( ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ` A ) ) | 
						
							| 5 |  | opeq1 |  |-  ( j = A -> <. j , (/) >. = <. A , (/) >. ) | 
						
							| 6 | 5 | s1eqd |  |-  ( j = A -> <" <. j , (/) >. "> = <" <. A , (/) >. "> ) | 
						
							| 7 | 6 | eceq1d |  |-  ( j = A -> [ <" <. j , (/) >. "> ] .~ = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 8 |  | eqid |  |-  ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) | 
						
							| 9 | 1 | fvexi |  |-  .~ e. _V | 
						
							| 10 |  | ecexg |  |-  ( .~ e. _V -> [ <" <. A , (/) >. "> ] .~ e. _V ) | 
						
							| 11 | 9 10 | ax-mp |  |-  [ <" <. A , (/) >. "> ] .~ e. _V | 
						
							| 12 | 7 8 11 | fvmpt |  |-  ( A e. I -> ( ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ` A ) = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 13 | 4 12 | sylan9eq |  |-  ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |