Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis2f.1 | |- R We A |
|
| wfis2f.2 | |- R Se A |
||
| wfis2f.3 | |- F/ y ps |
||
| wfis2f.4 | |- ( y = z -> ( ph <-> ps ) ) |
||
| wfis2f.5 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
||
| Assertion | wfis2f | |- ( y e. A -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis2f.1 | |- R We A |
|
| 2 | wfis2f.2 | |- R Se A |
|
| 3 | wfis2f.3 | |- F/ y ps |
|
| 4 | wfis2f.4 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 5 | wfis2f.5 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| 6 | 3 4 5 | wfis2fg | |- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |
| 7 | 1 2 6 | mp2an | |- A. y e. A ph |
| 8 | 7 | rspec | |- ( y e. A -> ph ) |