Step |
Hyp |
Ref |
Expression |
1 |
|
wfis2fg.1 |
|- F/ y ps |
2 |
|
wfis2fg.2 |
|- ( y = z -> ( ph <-> ps ) ) |
3 |
|
wfis2fg.3 |
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
4 |
|
wefr |
|- ( R We A -> R Fr A ) |
5 |
4
|
adantr |
|- ( ( R We A /\ R Se A ) -> R Fr A ) |
6 |
|
weso |
|- ( R We A -> R Or A ) |
7 |
|
sopo |
|- ( R Or A -> R Po A ) |
8 |
6 7
|
syl |
|- ( R We A -> R Po A ) |
9 |
8
|
adantr |
|- ( ( R We A /\ R Se A ) -> R Po A ) |
10 |
|
simpr |
|- ( ( R We A /\ R Se A ) -> R Se A ) |
11 |
3 1 2
|
frpoins2fg |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |
12 |
5 9 10 11
|
syl3anc |
|- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |