Step |
Hyp |
Ref |
Expression |
1 |
|
wfis2fg.1 |
⊢ Ⅎ 𝑦 𝜓 |
2 |
|
wfis2fg.2 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
wfis2fg.3 |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) |
4 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) |
6 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
7 |
|
sopo |
⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) |
8 |
6 7
|
syl |
⊢ ( 𝑅 We 𝐴 → 𝑅 Po 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 ) |
10 |
|
simpr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) |
11 |
3 1 2
|
frpoins2fg |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
12 |
5 9 10 11
|
syl3anc |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |