Metamath Proof Explorer


Theorem wfis2fg

Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypotheses wfis2fg.1 𝑦 𝜓
wfis2fg.2 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
wfis2fg.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
Assertion wfis2fg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 wfis2fg.1 𝑦 𝜓
2 wfis2fg.2 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
3 wfis2fg.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
4 wefr ( 𝑅 We 𝐴𝑅 Fr 𝐴 )
5 4 adantr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 )
6 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
7 sopo ( 𝑅 Or 𝐴𝑅 Po 𝐴 )
8 6 7 syl ( 𝑅 We 𝐴𝑅 Po 𝐴 )
9 8 adantr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 )
10 simpr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 )
11 3 1 2 frpoins2fg ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
12 5 9 10 11 syl3anc ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )