Description: The well-ordered recursion generator generates a relation. Avoids the axiom of replacement. (Contributed by Scott Fenton, 8-Jun-2018) (Proof shortened by Scott Fenton, 17-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wfrrel.1 | |- F = wrecs ( R , A , G ) |
|
Assertion | wfrrel | |- Rel F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrrel.1 | |- F = wrecs ( R , A , G ) |
|
2 | df-wrecs | |- wrecs ( R , A , G ) = frecs ( R , A , ( G o. 2nd ) ) |
|
3 | 1 2 | eqtri | |- F = frecs ( R , A , ( G o. 2nd ) ) |
4 | 3 | frrrel | |- Rel F |