Metamath Proof Explorer


Theorem frrrel

Description: Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis frrrel.1
|- F = frecs ( R , A , G )
Assertion frrrel
|- Rel F

Proof

Step Hyp Ref Expression
1 frrrel.1
 |-  F = frecs ( R , A , G )
2 eqid
 |-  { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
3 2 1 frrlem6
 |-  Rel F