Description: Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frrrel.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
Assertion | frrrel | ⊢ Rel 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrrel.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
2 | eqid | ⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
3 | 2 1 | frrlem6 | ⊢ Rel 𝐹 |