Description: Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frrlem5.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
frrlem5.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
Assertion | frrlem6 | ⊢ Rel 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem5.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
2 | frrlem5.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
3 | 1 2 | frrlem5 | ⊢ 𝐹 = ∪ 𝐵 |
4 | 3 | releqi | ⊢ ( Rel 𝐹 ↔ Rel ∪ 𝐵 ) |
5 | reluni | ⊢ ( Rel ∪ 𝐵 ↔ ∀ 𝑔 ∈ 𝐵 Rel 𝑔 ) | |
6 | 4 5 | bitri | ⊢ ( Rel 𝐹 ↔ ∀ 𝑔 ∈ 𝐵 Rel 𝑔 ) |
7 | 1 | frrlem2 | ⊢ ( 𝑔 ∈ 𝐵 → Fun 𝑔 ) |
8 | funrel | ⊢ ( Fun 𝑔 → Rel 𝑔 ) | |
9 | 7 8 | syl | ⊢ ( 𝑔 ∈ 𝐵 → Rel 𝑔 ) |
10 | 6 9 | mprgbir | ⊢ Rel 𝐹 |