Metamath Proof Explorer


Theorem frrlem6

Description: Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022)

Ref Expression
Hypotheses frrlem5.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
frrlem5.2 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion frrlem6 Rel 𝐹

Proof

Step Hyp Ref Expression
1 frrlem5.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
2 frrlem5.2 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 )
3 1 2 frrlem5 𝐹 = 𝐵
4 3 releqi ( Rel 𝐹 ↔ Rel 𝐵 )
5 reluni ( Rel 𝐵 ↔ ∀ 𝑔𝐵 Rel 𝑔 )
6 4 5 bitri ( Rel 𝐹 ↔ ∀ 𝑔𝐵 Rel 𝑔 )
7 1 frrlem2 ( 𝑔𝐵 → Fun 𝑔 )
8 funrel ( Fun 𝑔 → Rel 𝑔 )
9 7 8 syl ( 𝑔𝐵 → Rel 𝑔 )
10 6 9 mprgbir Rel 𝐹