Metamath Proof Explorer


Theorem frrlem6

Description: Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022)

Ref Expression
Hypotheses frrlem5.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem5.2 F = frecs R A G
Assertion frrlem6 Rel F

Proof

Step Hyp Ref Expression
1 frrlem5.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem5.2 F = frecs R A G
3 1 2 frrlem5 F = B
4 3 releqi Rel F Rel B
5 reluni Rel B g B Rel g
6 4 5 bitri Rel F g B Rel g
7 1 frrlem2 g B Fun g
8 funrel Fun g Rel g
9 7 8 syl g B Rel g
10 6 9 mprgbir Rel F