Description: Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
frrlem5.2 | |- F = frecs ( R , A , G ) |
||
Assertion | frrlem6 | |- Rel F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
2 | frrlem5.2 | |- F = frecs ( R , A , G ) |
|
3 | 1 2 | frrlem5 | |- F = U. B |
4 | 3 | releqi | |- ( Rel F <-> Rel U. B ) |
5 | reluni | |- ( Rel U. B <-> A. g e. B Rel g ) |
|
6 | 4 5 | bitri | |- ( Rel F <-> A. g e. B Rel g ) |
7 | 1 | frrlem2 | |- ( g e. B -> Fun g ) |
8 | funrel | |- ( Fun g -> Rel g ) |
|
9 | 7 8 | syl | |- ( g e. B -> Rel g ) |
10 | 6 9 | mprgbir | |- Rel F |