Metamath Proof Explorer


Theorem frrlem6

Description: Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022)

Ref Expression
Hypotheses frrlem5.1
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
frrlem5.2
|- F = frecs ( R , A , G )
Assertion frrlem6
|- Rel F

Proof

Step Hyp Ref Expression
1 frrlem5.1
 |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
2 frrlem5.2
 |-  F = frecs ( R , A , G )
3 1 2 frrlem5
 |-  F = U. B
4 3 releqi
 |-  ( Rel F <-> Rel U. B )
5 reluni
 |-  ( Rel U. B <-> A. g e. B Rel g )
6 4 5 bitri
 |-  ( Rel F <-> A. g e. B Rel g )
7 1 frrlem2
 |-  ( g e. B -> Fun g )
8 funrel
 |-  ( Fun g -> Rel g )
9 7 8 syl
 |-  ( g e. B -> Rel g )
10 6 9 mprgbir
 |-  Rel F