Description: In the recursive scheme
"(n+1)-xor" <-> if- ( ph , -. "n-xor" , "n-xor" )
we set n = 1 to formally arrive at an expression for "2-xor". It is based on "1-xor", that is known to be equivalent to its only input (see wl-1xor ). (Contributed by Wolf Lammen, 11-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-2xor | |- ( if- ( ph , -. ps , ps ) <-> ( ph \/_ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpdfbi | |- ( ( -. ph <-> ps ) <-> if- ( -. ph , ps , -. ps ) ) |
|
2 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
|
3 | nbbn | |- ( ( -. ph <-> ps ) <-> -. ( ph <-> ps ) ) |
|
4 | 2 3 | bitr4i | |- ( ( ph \/_ ps ) <-> ( -. ph <-> ps ) ) |
5 | ifpn | |- ( if- ( ph , -. ps , ps ) <-> if- ( -. ph , ps , -. ps ) ) |
|
6 | 1 4 5 | 3bitr4ri | |- ( if- ( ph , -. ps , ps ) <-> ( ph \/_ ps ) ) |