Metamath Proof Explorer


Theorem wl-2xor

Description: In the recursive scheme

"(n+1)-xor" <-> if- ( ph , -. "n-xor" , "n-xor" )

we set n = 1 to formally arrive at an expression for "2-xor". It is based on "1-xor", that is known to be equivalent to its only input (see wl-1xor ). (Contributed by Wolf Lammen, 11-May-2024)

Ref Expression
Assertion wl-2xor
|- ( if- ( ph , -. ps , ps ) <-> ( ph \/_ ps ) )

Proof

Step Hyp Ref Expression
1 ifpdfbi
 |-  ( ( -. ph <-> ps ) <-> if- ( -. ph , ps , -. ps ) )
2 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
3 nbbn
 |-  ( ( -. ph <-> ps ) <-> -. ( ph <-> ps ) )
4 2 3 bitr4i
 |-  ( ( ph \/_ ps ) <-> ( -. ph <-> ps ) )
5 ifpn
 |-  ( if- ( ph , -. ps , ps ) <-> if- ( -. ph , ps , -. ps ) )
6 1 4 5 3bitr4ri
 |-  ( if- ( ph , -. ps , ps ) <-> ( ph \/_ ps ) )