Metamath Proof Explorer


Theorem wl-2xor

Description: In the recursive scheme

"(n+1)-xor" <-> if- ( ph , -. "n-xor" , "n-xor" )

we set n = 1 to formally arrive at an expression for "2-xor". It is based on "1-xor", that is known to be equivalent to its only input (see wl-1xor ). (Contributed by Wolf Lammen, 11-May-2024)

Ref Expression
Assertion wl-2xor if- φ ¬ ψ ψ φ ψ

Proof

Step Hyp Ref Expression
1 ifpdfbi ¬ φ ψ if- ¬ φ ψ ¬ ψ
2 df-xor φ ψ ¬ φ ψ
3 nbbn ¬ φ ψ ¬ φ ψ
4 2 3 bitr4i φ ψ ¬ φ ψ
5 ifpn if- φ ¬ ψ ψ if- ¬ φ ψ ¬ ψ
6 1 4 5 3bitr4ri if- φ ¬ ψ ψ φ ψ