Metamath Proof Explorer


Theorem wl-1xor

Description: In the recursive scheme

"(n+1)-xor" <-> if- ( ph , -. "n-xor" , "n-xor" )

we set n = 0 to formally arrive at an expression for "1-xor". The base case "0-xor" is replaced with F. , as a sequence of 0 inputs never has an odd number being part of it. (Contributed by Wolf Lammen, 11-May-2024)

Ref Expression
Assertion wl-1xor
|- ( if- ( ps , -. F. , F. ) <-> ps )

Proof

Step Hyp Ref Expression
1 tbtru
 |-  ( ps <-> ( ps <-> T. ) )
2 1 biimpi
 |-  ( ps -> ( ps <-> T. ) )
3 notfal
 |-  ( -. F. <-> T. )
4 2 3 bitr4di
 |-  ( ps -> ( ps <-> -. F. ) )
5 nbfal
 |-  ( -. ps <-> ( ps <-> F. ) )
6 5 biimpi
 |-  ( -. ps -> ( ps <-> F. ) )
7 4 6 casesifp
 |-  ( ps <-> if- ( ps , -. F. , F. ) )
8 7 bicomi
 |-  ( if- ( ps , -. F. , F. ) <-> ps )