Metamath Proof Explorer


Theorem wl-1xor

Description: In the recursive scheme

"(n+1)-xor" <-> if- ( ph , -. "n-xor" , "n-xor" )

we set n = 0 to formally arrive at an expression for "1-xor". The base case "0-xor" is replaced with F. , as a sequence of 0 inputs never has an odd number being part of it. (Contributed by Wolf Lammen, 11-May-2024)

Ref Expression
Assertion wl-1xor ( if- ( 𝜓 , ¬ ⊥ , ⊥ ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 tbtru ( 𝜓 ↔ ( 𝜓 ↔ ⊤ ) )
2 1 biimpi ( 𝜓 → ( 𝜓 ↔ ⊤ ) )
3 notfal ( ¬ ⊥ ↔ ⊤ )
4 2 3 bitr4di ( 𝜓 → ( 𝜓 ↔ ¬ ⊥ ) )
5 nbfal ( ¬ 𝜓 ↔ ( 𝜓 ↔ ⊥ ) )
6 5 biimpi ( ¬ 𝜓 → ( 𝜓 ↔ ⊥ ) )
7 4 6 casesifp ( 𝜓 ↔ if- ( 𝜓 , ¬ ⊥ , ⊥ ) )
8 7 bicomi ( if- ( 𝜓 , ¬ ⊥ , ⊥ ) ↔ 𝜓 )