Metamath Proof Explorer


Theorem wl-3xorbi

Description: Triple xor can be replaced with a triple biconditional. Unlike \/_ , you cannot add more inputs by simply stacking up more biconditionals, and still express an "odd number of inputs". (Contributed by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xorbi
|- ( hadd ( ph , ps , ch ) <-> ( ph <-> ( ps <-> ch ) ) )

Proof

Step Hyp Ref Expression
1 wl-df3xor2
 |-  ( hadd ( ph , ps , ch ) <-> ( ph \/_ ( ps \/_ ch ) ) )
2 df-xor
 |-  ( ( ph \/_ ( ps \/_ ch ) ) <-> -. ( ph <-> ( ps \/_ ch ) ) )
3 xor3
 |-  ( -. ( ph <-> ( ps \/_ ch ) ) <-> ( ph <-> -. ( ps \/_ ch ) ) )
4 xnor
 |-  ( ( ps <-> ch ) <-> -. ( ps \/_ ch ) )
5 4 bibi2i
 |-  ( ( ph <-> ( ps <-> ch ) ) <-> ( ph <-> -. ( ps \/_ ch ) ) )
6 3 5 bitr4i
 |-  ( -. ( ph <-> ( ps \/_ ch ) ) <-> ( ph <-> ( ps <-> ch ) ) )
7 1 2 6 3bitri
 |-  ( hadd ( ph , ps , ch ) <-> ( ph <-> ( ps <-> ch ) ) )