Metamath Proof Explorer


Theorem wl-df3xor2

Description: Alternative definition of wl-df-3xor , using triple exclusive disjunction, or XOR3. You can add more input by appending each one with a \/_ . Copy of hadass . (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 1-May-2024)

Ref Expression
Assertion wl-df3xor2
|- ( hadd ( ph , ps , ch ) <-> ( ph \/_ ( ps \/_ ch ) ) )

Proof

Step Hyp Ref Expression
1 ifpn
 |-  ( if- ( ph , -. ( ps \/_ ch ) , ( ps \/_ ch ) ) <-> if- ( -. ph , ( ps \/_ ch ) , -. ( ps \/_ ch ) ) )
2 wl-df-3xor
 |-  ( hadd ( ph , ps , ch ) <-> if- ( ph , -. ( ps \/_ ch ) , ( ps \/_ ch ) ) )
3 df-xor
 |-  ( ( ph \/_ ( ps \/_ ch ) ) <-> -. ( ph <-> ( ps \/_ ch ) ) )
4 nbbn
 |-  ( ( -. ph <-> ( ps \/_ ch ) ) <-> -. ( ph <-> ( ps \/_ ch ) ) )
5 ifpdfbi
 |-  ( ( -. ph <-> ( ps \/_ ch ) ) <-> if- ( -. ph , ( ps \/_ ch ) , -. ( ps \/_ ch ) ) )
6 3 4 5 3bitr2i
 |-  ( ( ph \/_ ( ps \/_ ch ) ) <-> if- ( -. ph , ( ps \/_ ch ) , -. ( ps \/_ ch ) ) )
7 1 2 6 3bitr4i
 |-  ( hadd ( ph , ps , ch ) <-> ( ph \/_ ( ps \/_ ch ) ) )