| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ifpn | ⊢ ( if- ( 𝜑 ,  ¬  ( 𝜓  ⊻  𝜒 ) ,  ( 𝜓  ⊻  𝜒 ) )  ↔  if- ( ¬  𝜑 ,  ( 𝜓  ⊻  𝜒 ) ,  ¬  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 2 |  | wl-df-3xor | ⊢ ( hadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  if- ( 𝜑 ,  ¬  ( 𝜓  ⊻  𝜒 ) ,  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 3 |  | df-xor | ⊢ ( ( 𝜑  ⊻  ( 𝜓  ⊻  𝜒 ) )  ↔  ¬  ( 𝜑  ↔  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 4 |  | nbbn | ⊢ ( ( ¬  𝜑  ↔  ( 𝜓  ⊻  𝜒 ) )  ↔  ¬  ( 𝜑  ↔  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 5 |  | ifpdfbi | ⊢ ( ( ¬  𝜑  ↔  ( 𝜓  ⊻  𝜒 ) )  ↔  if- ( ¬  𝜑 ,  ( 𝜓  ⊻  𝜒 ) ,  ¬  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 6 | 3 4 5 | 3bitr2i | ⊢ ( ( 𝜑  ⊻  ( 𝜓  ⊻  𝜒 ) )  ↔  if- ( ¬  𝜑 ,  ( 𝜓  ⊻  𝜒 ) ,  ¬  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 7 | 1 2 6 | 3bitr4i | ⊢ ( hadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( 𝜑  ⊻  ( 𝜓  ⊻  𝜒 ) ) ) |