Step |
Hyp |
Ref |
Expression |
1 |
|
ifpn |
⊢ ( if- ( 𝜑 , ¬ ( 𝜓 ⊻ 𝜒 ) , ( 𝜓 ⊻ 𝜒 ) ) ↔ if- ( ¬ 𝜑 , ( 𝜓 ⊻ 𝜒 ) , ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
2 |
|
wl-df-3xor |
⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ ( 𝜓 ⊻ 𝜒 ) , ( 𝜓 ⊻ 𝜒 ) ) ) |
3 |
|
df-xor |
⊢ ( ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ) |
4 |
|
nbbn |
⊢ ( ( ¬ 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ) |
5 |
|
ifpdfbi |
⊢ ( ( ¬ 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ if- ( ¬ 𝜑 , ( 𝜓 ⊻ 𝜒 ) , ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
6 |
3 4 5
|
3bitr2i |
⊢ ( ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ↔ if- ( ¬ 𝜑 , ( 𝜓 ⊻ 𝜒 ) , ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
7 |
1 2 6
|
3bitr4i |
⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ) |