Metamath Proof Explorer


Theorem wl-df3xor3

Description: Alternative form of wl-df3xor2 . Copy of df-had . (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 1-May-2024)

Ref Expression
Assertion wl-df3xor3 ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ⊻ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 wl-df3xor2 ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓𝜒 ) ) )
2 xorass ( ( ( 𝜑𝜓 ) ⊻ 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓𝜒 ) ) )
3 1 2 bitr4i ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ⊻ 𝜒 ) )