Metamath Proof Explorer


Theorem wl-3xortru

Description: If the first input is true, then triple xor is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xortru ( 𝜑 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ¬ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 wl-df-3xor ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ ( 𝜓𝜒 ) , ( 𝜓𝜒 ) ) )
2 ifptru ( 𝜑 → ( if- ( 𝜑 , ¬ ( 𝜓𝜒 ) , ( 𝜓𝜒 ) ) ↔ ¬ ( 𝜓𝜒 ) ) )
3 1 2 syl5bb ( 𝜑 → ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ¬ ( 𝜓𝜒 ) ) )