Metamath Proof Explorer


Theorem wl-3xortru

Description: If the first input is true, then triple xor is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xortru φ hadd φ ψ χ ¬ ψ χ

Proof

Step Hyp Ref Expression
1 wl-df-3xor hadd φ ψ χ if- φ ¬ ψ χ ψ χ
2 ifptru φ if- φ ¬ ψ χ ψ χ ¬ ψ χ
3 1 2 syl5bb φ hadd φ ψ χ ¬ ψ χ