Metamath Proof Explorer


Theorem wl-3xortru

Description: If the first input is true, then triple xor is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xortru
|- ( ph -> ( hadd ( ph , ps , ch ) <-> -. ( ps \/_ ch ) ) )

Proof

Step Hyp Ref Expression
1 wl-df-3xor
 |-  ( hadd ( ph , ps , ch ) <-> if- ( ph , -. ( ps \/_ ch ) , ( ps \/_ ch ) ) )
2 ifptru
 |-  ( ph -> ( if- ( ph , -. ( ps \/_ ch ) , ( ps \/_ ch ) ) <-> -. ( ps \/_ ch ) ) )
3 1 2 syl5bb
 |-  ( ph -> ( hadd ( ph , ps , ch ) <-> -. ( ps \/_ ch ) ) )