Metamath Proof Explorer


Theorem wl-df3xor3

Description: Alternative form of wl-df3xor2 . Copy of df-had . (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 1-May-2024)

Ref Expression
Assertion wl-df3xor3
|- ( hadd ( ph , ps , ch ) <-> ( ( ph \/_ ps ) \/_ ch ) )

Proof

Step Hyp Ref Expression
1 wl-df3xor2
 |-  ( hadd ( ph , ps , ch ) <-> ( ph \/_ ( ps \/_ ch ) ) )
2 xorass
 |-  ( ( ( ph \/_ ps ) \/_ ch ) <-> ( ph \/_ ( ps \/_ ch ) ) )
3 1 2 bitr4i
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph \/_ ps ) \/_ ch ) )