Metamath Proof Explorer


Theorem wl-3xorbi123d

Description: Equivalence theorem for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Hypotheses wl-3xorbid.1
|- ( ph -> ( ps <-> ch ) )
wl-3xorbid.2
|- ( ph -> ( th <-> ta ) )
wl-3xorbid.3
|- ( ph -> ( et <-> ze ) )
Assertion wl-3xorbi123d
|- ( ph -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) )

Proof

Step Hyp Ref Expression
1 wl-3xorbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 wl-3xorbid.2
 |-  ( ph -> ( th <-> ta ) )
3 wl-3xorbid.3
 |-  ( ph -> ( et <-> ze ) )
4 1 2 bibi12d
 |-  ( ph -> ( ( ps <-> th ) <-> ( ch <-> ta ) ) )
5 4 3 bibi12d
 |-  ( ph -> ( ( ( ps <-> th ) <-> et ) <-> ( ( ch <-> ta ) <-> ze ) ) )
6 wl-3xorbi2
 |-  ( hadd ( ps , th , et ) <-> ( ( ps <-> th ) <-> et ) )
7 wl-3xorbi2
 |-  ( hadd ( ch , ta , ze ) <-> ( ( ch <-> ta ) <-> ze ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) )