Metamath Proof Explorer


Theorem wl-3xorbi123i

Description: Equivalence theorem for triple xor. Copy of hadbi123i . (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses wl-3xorbii.1
|- ( ps <-> ch )
wl-3xorbii.2
|- ( th <-> ta )
wl-3xorbii.3
|- ( et <-> ze )
Assertion wl-3xorbi123i
|- ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) )

Proof

Step Hyp Ref Expression
1 wl-3xorbii.1
 |-  ( ps <-> ch )
2 wl-3xorbii.2
 |-  ( th <-> ta )
3 wl-3xorbii.3
 |-  ( et <-> ze )
4 1 a1i
 |-  ( T. -> ( ps <-> ch ) )
5 2 a1i
 |-  ( T. -> ( th <-> ta ) )
6 3 a1i
 |-  ( T. -> ( et <-> ze ) )
7 4 5 6 wl-3xorbi123d
 |-  ( T. -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) )
8 7 mptru
 |-  ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) )