Description: Equivalence theorem for triple xor. Copy of hadbi123i . (Contributed by Mario Carneiro, 4-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wl-3xorbii.1 | |- ( ps <-> ch ) |
|
wl-3xorbii.2 | |- ( th <-> ta ) |
||
wl-3xorbii.3 | |- ( et <-> ze ) |
||
Assertion | wl-3xorbi123i | |- ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-3xorbii.1 | |- ( ps <-> ch ) |
|
2 | wl-3xorbii.2 | |- ( th <-> ta ) |
|
3 | wl-3xorbii.3 | |- ( et <-> ze ) |
|
4 | 1 | a1i | |- ( T. -> ( ps <-> ch ) ) |
5 | 2 | a1i | |- ( T. -> ( th <-> ta ) ) |
6 | 3 | a1i | |- ( T. -> ( et <-> ze ) ) |
7 | 4 5 6 | wl-3xorbi123d | |- ( T. -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) ) |
8 | 7 | mptru | |- ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) |