Metamath Proof Explorer


Theorem wl-3xorrot

Description: Rotation law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xorrot
|- ( hadd ( ph , ps , ch ) <-> hadd ( ps , ch , ph ) )

Proof

Step Hyp Ref Expression
1 bicom
 |-  ( ( ph <-> ( ps <-> ch ) ) <-> ( ( ps <-> ch ) <-> ph ) )
2 wl-3xorbi
 |-  ( hadd ( ph , ps , ch ) <-> ( ph <-> ( ps <-> ch ) ) )
3 wl-3xorbi2
 |-  ( hadd ( ps , ch , ph ) <-> ( ( ps <-> ch ) <-> ph ) )
4 1 2 3 3bitr4i
 |-  ( hadd ( ph , ps , ch ) <-> hadd ( ps , ch , ph ) )