Metamath Proof Explorer


Theorem wl-3xorrot

Description: Rotation law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xorrot ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bicom ( ( 𝜑 ↔ ( 𝜓𝜒 ) ) ↔ ( ( 𝜓𝜒 ) ↔ 𝜑 ) )
2 wl-3xorbi ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓𝜒 ) ) )
3 wl-3xorbi2 ( hadd ( 𝜓 , 𝜒 , 𝜑 ) ↔ ( ( 𝜓𝜒 ) ↔ 𝜑 ) )
4 1 2 3 3bitr4i ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜒 , 𝜑 ) )