Description: Equivalence theorem for triple xor. Copy of hadbi123i . (Contributed by Mario Carneiro, 4-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wl-3xorbii.1 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
wl-3xorbii.2 | ⊢ ( 𝜃 ↔ 𝜏 ) | ||
wl-3xorbii.3 | ⊢ ( 𝜂 ↔ 𝜁 ) | ||
Assertion | wl-3xorbi123i | ⊢ ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-3xorbii.1 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
2 | wl-3xorbii.2 | ⊢ ( 𝜃 ↔ 𝜏 ) | |
3 | wl-3xorbii.3 | ⊢ ( 𝜂 ↔ 𝜁 ) | |
4 | 1 | a1i | ⊢ ( ⊤ → ( 𝜓 ↔ 𝜒 ) ) |
5 | 2 | a1i | ⊢ ( ⊤ → ( 𝜃 ↔ 𝜏 ) ) |
6 | 3 | a1i | ⊢ ( ⊤ → ( 𝜂 ↔ 𝜁 ) ) |
7 | 4 5 6 | wl-3xorbi123d | ⊢ ( ⊤ → ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) ) |
8 | 7 | mptru | ⊢ ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) |