Metamath Proof Explorer


Theorem wl-3xorbi123i

Description: Equivalence theorem for triple xor. Copy of hadbi123i . (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses wl-3xorbii.1 ( 𝜓𝜒 )
wl-3xorbii.2 ( 𝜃𝜏 )
wl-3xorbii.3 ( 𝜂𝜁 )
Assertion wl-3xorbi123i ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) )

Proof

Step Hyp Ref Expression
1 wl-3xorbii.1 ( 𝜓𝜒 )
2 wl-3xorbii.2 ( 𝜃𝜏 )
3 wl-3xorbii.3 ( 𝜂𝜁 )
4 1 a1i ( ⊤ → ( 𝜓𝜒 ) )
5 2 a1i ( ⊤ → ( 𝜃𝜏 ) )
6 3 a1i ( ⊤ → ( 𝜂𝜁 ) )
7 4 5 6 wl-3xorbi123d ( ⊤ → ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) ) )
8 7 mptru ( hadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ hadd ( 𝜒 , 𝜏 , 𝜁 ) )