Step |
Hyp |
Ref |
Expression |
1 |
|
nfna1 |
|- F/ y -. A. y y = z |
2 |
|
nfeqf2 |
|- ( -. A. y y = z -> F/ y w = z ) |
3 |
|
equequ1 |
|- ( y = w -> ( y = z <-> w = z ) ) |
4 |
3
|
a1i |
|- ( -. A. y y = z -> ( y = w -> ( y = z <-> w = z ) ) ) |
5 |
1 2 4
|
sbied |
|- ( -. A. y y = z -> ( [ w / y ] y = z <-> w = z ) ) |
6 |
5
|
sbbidv |
|- ( -. A. y y = z -> ( [ x / w ] [ w / y ] y = z <-> [ x / w ] w = z ) ) |
7 |
|
sbco2vv |
|- ( [ x / w ] [ w / y ] y = z <-> [ x / y ] y = z ) |
8 |
|
equsb3 |
|- ( [ x / w ] w = z <-> x = z ) |
9 |
6 7 8
|
3bitr3g |
|- ( -. A. y y = z -> ( [ x / y ] y = z <-> x = z ) ) |