Metamath Proof Explorer


Theorem wl-equsb3

Description: equsb3 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019)

Ref Expression
Assertion wl-equsb3 ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑥 / 𝑦 ] 𝑦 = 𝑧𝑥 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 nfna1 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧
2 nfeqf2 ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑤 = 𝑧 )
3 equequ1 ( 𝑦 = 𝑤 → ( 𝑦 = 𝑧𝑤 = 𝑧 ) )
4 3 a1i ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑦 = 𝑤 → ( 𝑦 = 𝑧𝑤 = 𝑧 ) ) )
5 1 2 4 sbied ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑤 / 𝑦 ] 𝑦 = 𝑧𝑤 = 𝑧 ) )
6 5 sbbidv ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑥 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝑦 = 𝑧 ↔ [ 𝑥 / 𝑤 ] 𝑤 = 𝑧 ) )
7 sbco2vv ( [ 𝑥 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝑦 = 𝑧 ↔ [ 𝑥 / 𝑦 ] 𝑦 = 𝑧 )
8 equsb3 ( [ 𝑥 / 𝑤 ] 𝑤 = 𝑧𝑥 = 𝑧 )
9 6 7 8 3bitr3g ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑥 / 𝑦 ] 𝑦 = 𝑧𝑥 = 𝑧 ) )