Description: equsb3 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-equsb3 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑥 / 𝑦 ] 𝑦 = 𝑧 ↔ 𝑥 = 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 2 | nfeqf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑤 = 𝑧 ) | |
| 3 | equequ1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 = 𝑧 ↔ 𝑤 = 𝑧 ) ) | |
| 4 | 3 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑦 = 𝑤 → ( 𝑦 = 𝑧 ↔ 𝑤 = 𝑧 ) ) ) |
| 5 | 1 2 4 | sbied | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑤 / 𝑦 ] 𝑦 = 𝑧 ↔ 𝑤 = 𝑧 ) ) |
| 6 | 5 | sbbidv | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑥 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝑦 = 𝑧 ↔ [ 𝑥 / 𝑤 ] 𝑤 = 𝑧 ) ) |
| 7 | sbco2vv | ⊢ ( [ 𝑥 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝑦 = 𝑧 ↔ [ 𝑥 / 𝑦 ] 𝑦 = 𝑧 ) | |
| 8 | equsb3 | ⊢ ( [ 𝑥 / 𝑤 ] 𝑤 = 𝑧 ↔ 𝑥 = 𝑧 ) | |
| 9 | 6 7 8 | 3bitr3g | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑥 / 𝑦 ] 𝑦 = 𝑧 ↔ 𝑥 = 𝑧 ) ) |