Metamath Proof Explorer


Theorem wl-luk-imim1i

Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Copy of imim1i with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018)

Ref Expression
Hypothesis wl-luk-imim1i.1
|- ( ph -> ps )
Assertion wl-luk-imim1i
|- ( ( ps -> ch ) -> ( ph -> ch ) )

Proof

Step Hyp Ref Expression
1 wl-luk-imim1i.1
 |-  ( ph -> ps )
2 ax-luk1
 |-  ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )
3 1 2 ax-mp
 |-  ( ( ps -> ch ) -> ( ph -> ch ) )