Metamath Proof Explorer


Theorem wl-luk-syl

Description: An inference version of the transitive laws for implication luk-1 . Copy of syl with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-syl.1
|- ( ph -> ps )
wl-luk-syl.2
|- ( ps -> ch )
Assertion wl-luk-syl
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 wl-luk-syl.1
 |-  ( ph -> ps )
2 wl-luk-syl.2
 |-  ( ps -> ch )
3 1 wl-luk-imim1i
 |-  ( ( ps -> ch ) -> ( ph -> ch ) )
4 2 3 ax-mp
 |-  ( ph -> ch )