Metamath Proof Explorer


Theorem wl-luk-syl

Description: An inference version of the transitive laws for implication luk-1 . Copy of syl with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-syl.1 ( 𝜑𝜓 )
wl-luk-syl.2 ( 𝜓𝜒 )
Assertion wl-luk-syl ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 wl-luk-syl.1 ( 𝜑𝜓 )
2 wl-luk-syl.2 ( 𝜓𝜒 )
3 1 wl-luk-imim1i ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) )
4 2 3 ax-mp ( 𝜑𝜒 )