Description: An instance of hbn1w applied to equality. (Contributed by Wolf Lammen, 7-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-naevhba1v | |- ( -. A. x x = y -> A. x -. A. x x = y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 | |- ( x = z -> ( x = y <-> z = y ) ) |
|
2 | 1 | hbn1w | |- ( -. A. x x = y -> A. x -. A. x x = y ) |