Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-naevhba1v
Next ⟩
wl-spae
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-naevhba1v
Description:
An instance of
hbn1w
applied to equality.
(Contributed by
Wolf Lammen
, 7-Apr-2021)
Ref
Expression
Assertion
wl-naevhba1v
⊢
¬
∀
x
x
=
y
→
∀
x
¬
∀
x
x
=
y
Proof
Step
Hyp
Ref
Expression
1
equequ1
⊢
x
=
z
→
x
=
y
↔
z
=
y
2
1
hbn1w
⊢
¬
∀
x
x
=
y
→
∀
x
¬
∀
x
x
=
y