Metamath Proof Explorer


Theorem wl-sbal1

Description: A theorem used in elimination of disjoint variable restriction on x and y by replacing it with a distinctor -. A. x x = z . (Contributed by NM, 15-May-1993) Proof is based on wl-sbalnae now. See also sbal1 . (Revised by Wolf Lammen, 25-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion wl-sbal1
|- ( -. A. x x = z -> ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) )

Proof

Step Hyp Ref Expression
1 naev
 |-  ( -. A. x x = z -> -. A. x x = y )
2 wl-sbalnae
 |-  ( ( -. A. x x = y /\ -. A. x x = z ) -> ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) )
3 1 2 mpancom
 |-  ( -. A. x x = z -> ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) )