| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkd.p |
|- ( ph -> P e. Word _V ) |
| 2 |
|
wlkd.f |
|- ( ph -> F e. Word _V ) |
| 3 |
|
wlkd.l |
|- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 4 |
|
wlkd.e |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 5 |
|
wlkd.n |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 6 |
|
r19.26 |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) <-> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 7 |
|
df-ne |
|- ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> -. ( P ` k ) = ( P ` ( k + 1 ) ) ) |
| 8 |
|
ifpfal |
|- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 9 |
7 8
|
sylbi |
|- ( ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 10 |
9
|
biimparc |
|- ( ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 11 |
10
|
ralimi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 12 |
6 11
|
sylbir |
|- ( ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 13 |
4 5 12
|
syl2anc |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |