| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
wlkp1.i |
|- I = ( iEdg ` G ) |
| 3 |
|
wlkp1.f |
|- ( ph -> Fun I ) |
| 4 |
|
wlkp1.a |
|- ( ph -> I e. Fin ) |
| 5 |
|
wlkp1.b |
|- ( ph -> B e. W ) |
| 6 |
|
wlkp1.c |
|- ( ph -> C e. V ) |
| 7 |
|
wlkp1.d |
|- ( ph -> -. B e. dom I ) |
| 8 |
|
wlkp1.w |
|- ( ph -> F ( Walks ` G ) P ) |
| 9 |
|
wlkp1.n |
|- N = ( # ` F ) |
| 10 |
|
wlkp1.e |
|- ( ph -> E e. ( Edg ` G ) ) |
| 11 |
|
wlkp1.x |
|- ( ph -> { ( P ` N ) , C } C_ E ) |
| 12 |
|
wlkp1.u |
|- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
| 13 |
|
wlkp1.h |
|- H = ( F u. { <. N , B >. } ) |
| 14 |
|
wlkp1.q |
|- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
| 15 |
|
wlkp1.s |
|- ( ph -> ( Vtx ` S ) = V ) |
| 16 |
14
|
fveq1i |
|- ( Q ` k ) = ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) |
| 17 |
|
fzp1nel |
|- -. ( N + 1 ) e. ( 0 ... N ) |
| 18 |
|
eleq1 |
|- ( k = ( N + 1 ) -> ( k e. ( 0 ... N ) <-> ( N + 1 ) e. ( 0 ... N ) ) ) |
| 19 |
18
|
notbid |
|- ( k = ( N + 1 ) -> ( -. k e. ( 0 ... N ) <-> -. ( N + 1 ) e. ( 0 ... N ) ) ) |
| 20 |
19
|
eqcoms |
|- ( ( N + 1 ) = k -> ( -. k e. ( 0 ... N ) <-> -. ( N + 1 ) e. ( 0 ... N ) ) ) |
| 21 |
17 20
|
mpbiri |
|- ( ( N + 1 ) = k -> -. k e. ( 0 ... N ) ) |
| 22 |
21
|
a1i |
|- ( ph -> ( ( N + 1 ) = k -> -. k e. ( 0 ... N ) ) ) |
| 23 |
22
|
con2d |
|- ( ph -> ( k e. ( 0 ... N ) -> -. ( N + 1 ) = k ) ) |
| 24 |
23
|
imp |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> -. ( N + 1 ) = k ) |
| 25 |
24
|
neqned |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N + 1 ) =/= k ) |
| 26 |
|
fvunsn |
|- ( ( N + 1 ) =/= k -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) = ( P ` k ) ) |
| 27 |
25 26
|
syl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) = ( P ` k ) ) |
| 28 |
16 27
|
eqtrid |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( Q ` k ) = ( P ` k ) ) |
| 29 |
28
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ... N ) ( Q ` k ) = ( P ` k ) ) |