| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
wlkp1.i |
|- I = ( iEdg ` G ) |
| 3 |
|
wlkp1.f |
|- ( ph -> Fun I ) |
| 4 |
|
wlkp1.a |
|- ( ph -> I e. Fin ) |
| 5 |
|
wlkp1.b |
|- ( ph -> B e. W ) |
| 6 |
|
wlkp1.c |
|- ( ph -> C e. V ) |
| 7 |
|
wlkp1.d |
|- ( ph -> -. B e. dom I ) |
| 8 |
|
wlkp1.w |
|- ( ph -> F ( Walks ` G ) P ) |
| 9 |
|
wlkp1.n |
|- N = ( # ` F ) |
| 10 |
|
wlkp1.e |
|- ( ph -> E e. ( Edg ` G ) ) |
| 11 |
|
wlkp1.x |
|- ( ph -> { ( P ` N ) , C } C_ E ) |
| 12 |
|
wlkp1.u |
|- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
| 13 |
|
wlkp1.h |
|- H = ( F u. { <. N , B >. } ) |
| 14 |
|
wlkp1.q |
|- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
| 15 |
|
wlkp1.s |
|- ( ph -> ( Vtx ` S ) = V ) |
| 16 |
|
wlkp1.l |
|- ( ( ph /\ C = ( P ` N ) ) -> E = { C } ) |
| 17 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 18 |
|
wrdf |
|- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 19 |
9
|
eqcomi |
|- ( # ` F ) = N |
| 20 |
19
|
oveq2i |
|- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) |
| 21 |
20
|
feq2i |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I <-> F : ( 0 ..^ N ) --> dom I ) |
| 22 |
18 21
|
sylib |
|- ( F e. Word dom I -> F : ( 0 ..^ N ) --> dom I ) |
| 23 |
8 17 22
|
3syl |
|- ( ph -> F : ( 0 ..^ N ) --> dom I ) |
| 24 |
9
|
fvexi |
|- N e. _V |
| 25 |
24
|
a1i |
|- ( ph -> N e. _V ) |
| 26 |
|
snidg |
|- ( B e. W -> B e. { B } ) |
| 27 |
5 26
|
syl |
|- ( ph -> B e. { B } ) |
| 28 |
|
dmsnopg |
|- ( E e. ( Edg ` G ) -> dom { <. B , E >. } = { B } ) |
| 29 |
10 28
|
syl |
|- ( ph -> dom { <. B , E >. } = { B } ) |
| 30 |
27 29
|
eleqtrrd |
|- ( ph -> B e. dom { <. B , E >. } ) |
| 31 |
25 30
|
fsnd |
|- ( ph -> { <. N , B >. } : { N } --> dom { <. B , E >. } ) |
| 32 |
|
fzodisjsn |
|- ( ( 0 ..^ N ) i^i { N } ) = (/) |
| 33 |
32
|
a1i |
|- ( ph -> ( ( 0 ..^ N ) i^i { N } ) = (/) ) |
| 34 |
|
fun |
|- ( ( ( F : ( 0 ..^ N ) --> dom I /\ { <. N , B >. } : { N } --> dom { <. B , E >. } ) /\ ( ( 0 ..^ N ) i^i { N } ) = (/) ) -> ( F u. { <. N , B >. } ) : ( ( 0 ..^ N ) u. { N } ) --> ( dom I u. dom { <. B , E >. } ) ) |
| 35 |
23 31 33 34
|
syl21anc |
|- ( ph -> ( F u. { <. N , B >. } ) : ( ( 0 ..^ N ) u. { N } ) --> ( dom I u. dom { <. B , E >. } ) ) |
| 36 |
13
|
a1i |
|- ( ph -> H = ( F u. { <. N , B >. } ) ) |
| 37 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem2 |
|- ( ph -> ( # ` H ) = ( N + 1 ) ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ ( N + 1 ) ) ) |
| 39 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 40 |
|
eleq1 |
|- ( ( # ` F ) = N -> ( ( # ` F ) e. NN0 <-> N e. NN0 ) ) |
| 41 |
40
|
eqcoms |
|- ( N = ( # ` F ) -> ( ( # ` F ) e. NN0 <-> N e. NN0 ) ) |
| 42 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
| 43 |
42
|
biimpi |
|- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 44 |
41 43
|
biimtrdi |
|- ( N = ( # ` F ) -> ( ( # ` F ) e. NN0 -> N e. ( ZZ>= ` 0 ) ) ) |
| 45 |
9 44
|
ax-mp |
|- ( ( # ` F ) e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 46 |
8 39 45
|
3syl |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 47 |
|
fzosplitsn |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 48 |
46 47
|
syl |
|- ( ph -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 49 |
38 48
|
eqtrd |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 50 |
12
|
dmeqd |
|- ( ph -> dom ( iEdg ` S ) = dom ( I u. { <. B , E >. } ) ) |
| 51 |
|
dmun |
|- dom ( I u. { <. B , E >. } ) = ( dom I u. dom { <. B , E >. } ) |
| 52 |
50 51
|
eqtrdi |
|- ( ph -> dom ( iEdg ` S ) = ( dom I u. dom { <. B , E >. } ) ) |
| 53 |
36 49 52
|
feq123d |
|- ( ph -> ( H : ( 0 ..^ ( # ` H ) ) --> dom ( iEdg ` S ) <-> ( F u. { <. N , B >. } ) : ( ( 0 ..^ N ) u. { N } ) --> ( dom I u. dom { <. B , E >. } ) ) ) |
| 54 |
35 53
|
mpbird |
|- ( ph -> H : ( 0 ..^ ( # ` H ) ) --> dom ( iEdg ` S ) ) |
| 55 |
|
iswrdb |
|- ( H e. Word dom ( iEdg ` S ) <-> H : ( 0 ..^ ( # ` H ) ) --> dom ( iEdg ` S ) ) |
| 56 |
54 55
|
sylibr |
|- ( ph -> H e. Word dom ( iEdg ` S ) ) |
| 57 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 58 |
8 57
|
syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 59 |
9
|
oveq2i |
|- ( 0 ... N ) = ( 0 ... ( # ` F ) ) |
| 60 |
59
|
feq2i |
|- ( P : ( 0 ... N ) --> V <-> P : ( 0 ... ( # ` F ) ) --> V ) |
| 61 |
58 60
|
sylibr |
|- ( ph -> P : ( 0 ... N ) --> V ) |
| 62 |
|
ovexd |
|- ( ph -> ( N + 1 ) e. _V ) |
| 63 |
62 6
|
fsnd |
|- ( ph -> { <. ( N + 1 ) , C >. } : { ( N + 1 ) } --> V ) |
| 64 |
|
fzp1disj |
|- ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) |
| 65 |
64
|
a1i |
|- ( ph -> ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) ) |
| 66 |
|
fun |
|- ( ( ( P : ( 0 ... N ) --> V /\ { <. ( N + 1 ) , C >. } : { ( N + 1 ) } --> V ) /\ ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) ) -> ( P u. { <. ( N + 1 ) , C >. } ) : ( ( 0 ... N ) u. { ( N + 1 ) } ) --> ( V u. V ) ) |
| 67 |
61 63 65 66
|
syl21anc |
|- ( ph -> ( P u. { <. ( N + 1 ) , C >. } ) : ( ( 0 ... N ) u. { ( N + 1 ) } ) --> ( V u. V ) ) |
| 68 |
|
fzsuc |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... ( N + 1 ) ) = ( ( 0 ... N ) u. { ( N + 1 ) } ) ) |
| 69 |
46 68
|
syl |
|- ( ph -> ( 0 ... ( N + 1 ) ) = ( ( 0 ... N ) u. { ( N + 1 ) } ) ) |
| 70 |
|
unidm |
|- ( V u. V ) = V |
| 71 |
70
|
eqcomi |
|- V = ( V u. V ) |
| 72 |
71
|
a1i |
|- ( ph -> V = ( V u. V ) ) |
| 73 |
69 72
|
feq23d |
|- ( ph -> ( ( P u. { <. ( N + 1 ) , C >. } ) : ( 0 ... ( N + 1 ) ) --> V <-> ( P u. { <. ( N + 1 ) , C >. } ) : ( ( 0 ... N ) u. { ( N + 1 ) } ) --> ( V u. V ) ) ) |
| 74 |
67 73
|
mpbird |
|- ( ph -> ( P u. { <. ( N + 1 ) , C >. } ) : ( 0 ... ( N + 1 ) ) --> V ) |
| 75 |
14
|
a1i |
|- ( ph -> Q = ( P u. { <. ( N + 1 ) , C >. } ) ) |
| 76 |
37
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` H ) ) = ( 0 ... ( N + 1 ) ) ) |
| 77 |
75 76 15
|
feq123d |
|- ( ph -> ( Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) <-> ( P u. { <. ( N + 1 ) , C >. } ) : ( 0 ... ( N + 1 ) ) --> V ) ) |
| 78 |
74 77
|
mpbird |
|- ( ph -> Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
wlkp1lem8 |
|- ( ph -> A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) |
| 80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem4 |
|- ( ph -> ( S e. _V /\ H e. _V /\ Q e. _V ) ) |
| 81 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 82 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
| 83 |
81 82
|
iswlk |
|- ( ( S e. _V /\ H e. _V /\ Q e. _V ) -> ( H ( Walks ` S ) Q <-> ( H e. Word dom ( iEdg ` S ) /\ Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) ) |
| 84 |
80 83
|
syl |
|- ( ph -> ( H ( Walks ` S ) Q <-> ( H e. Word dom ( iEdg ` S ) /\ Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) ) |
| 85 |
56 78 79 84
|
mpbir3and |
|- ( ph -> H ( Walks ` S ) Q ) |