Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
|- V = ( Vtx ` G ) |
2 |
|
wlkp1.i |
|- I = ( iEdg ` G ) |
3 |
|
wlkp1.f |
|- ( ph -> Fun I ) |
4 |
|
wlkp1.a |
|- ( ph -> I e. Fin ) |
5 |
|
wlkp1.b |
|- ( ph -> B e. W ) |
6 |
|
wlkp1.c |
|- ( ph -> C e. V ) |
7 |
|
wlkp1.d |
|- ( ph -> -. B e. dom I ) |
8 |
|
wlkp1.w |
|- ( ph -> F ( Walks ` G ) P ) |
9 |
|
wlkp1.n |
|- N = ( # ` F ) |
10 |
|
wlkp1.e |
|- ( ph -> E e. ( Edg ` G ) ) |
11 |
|
wlkp1.x |
|- ( ph -> { ( P ` N ) , C } C_ E ) |
12 |
|
wlkp1.u |
|- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
13 |
|
wlkp1.h |
|- H = ( F u. { <. N , B >. } ) |
14 |
13
|
fveq2i |
|- ( # ` H ) = ( # ` ( F u. { <. N , B >. } ) ) |
15 |
14
|
a1i |
|- ( ph -> ( # ` H ) = ( # ` ( F u. { <. N , B >. } ) ) ) |
16 |
|
opex |
|- <. N , B >. e. _V |
17 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
18 |
|
wrdfin |
|- ( F e. Word dom I -> F e. Fin ) |
19 |
8 17 18
|
3syl |
|- ( ph -> F e. Fin ) |
20 |
|
fzonel |
|- -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) |
21 |
20
|
a1i |
|- ( ph -> -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) |
22 |
|
eleq1 |
|- ( N = ( # ` F ) -> ( N e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) |
23 |
22
|
notbid |
|- ( N = ( # ` F ) -> ( -. N e. ( 0 ..^ ( # ` F ) ) <-> -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) |
24 |
21 23
|
syl5ibr |
|- ( N = ( # ` F ) -> ( ph -> -. N e. ( 0 ..^ ( # ` F ) ) ) ) |
25 |
9 24
|
ax-mp |
|- ( ph -> -. N e. ( 0 ..^ ( # ` F ) ) ) |
26 |
|
wrdfn |
|- ( F e. Word dom I -> F Fn ( 0 ..^ ( # ` F ) ) ) |
27 |
8 17 26
|
3syl |
|- ( ph -> F Fn ( 0 ..^ ( # ` F ) ) ) |
28 |
|
fnop |
|- ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ <. N , B >. e. F ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
29 |
28
|
ex |
|- ( F Fn ( 0 ..^ ( # ` F ) ) -> ( <. N , B >. e. F -> N e. ( 0 ..^ ( # ` F ) ) ) ) |
30 |
27 29
|
syl |
|- ( ph -> ( <. N , B >. e. F -> N e. ( 0 ..^ ( # ` F ) ) ) ) |
31 |
25 30
|
mtod |
|- ( ph -> -. <. N , B >. e. F ) |
32 |
19 31
|
jca |
|- ( ph -> ( F e. Fin /\ -. <. N , B >. e. F ) ) |
33 |
|
hashunsng |
|- ( <. N , B >. e. _V -> ( ( F e. Fin /\ -. <. N , B >. e. F ) -> ( # ` ( F u. { <. N , B >. } ) ) = ( ( # ` F ) + 1 ) ) ) |
34 |
16 32 33
|
mpsyl |
|- ( ph -> ( # ` ( F u. { <. N , B >. } ) ) = ( ( # ` F ) + 1 ) ) |
35 |
9
|
eqcomi |
|- ( # ` F ) = N |
36 |
35
|
a1i |
|- ( ph -> ( # ` F ) = N ) |
37 |
36
|
oveq1d |
|- ( ph -> ( ( # ` F ) + 1 ) = ( N + 1 ) ) |
38 |
15 34 37
|
3eqtrd |
|- ( ph -> ( # ` H ) = ( N + 1 ) ) |