| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
wlkp1.i |
|- I = ( iEdg ` G ) |
| 3 |
|
wlkp1.f |
|- ( ph -> Fun I ) |
| 4 |
|
wlkp1.a |
|- ( ph -> I e. Fin ) |
| 5 |
|
wlkp1.b |
|- ( ph -> B e. W ) |
| 6 |
|
wlkp1.c |
|- ( ph -> C e. V ) |
| 7 |
|
wlkp1.d |
|- ( ph -> -. B e. dom I ) |
| 8 |
|
wlkp1.w |
|- ( ph -> F ( Walks ` G ) P ) |
| 9 |
|
wlkp1.n |
|- N = ( # ` F ) |
| 10 |
|
wlkp1.e |
|- ( ph -> E e. ( Edg ` G ) ) |
| 11 |
|
wlkp1.x |
|- ( ph -> { ( P ` N ) , C } C_ E ) |
| 12 |
|
wlkp1.u |
|- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
| 13 |
|
wlkp1.h |
|- H = ( F u. { <. N , B >. } ) |
| 14 |
|
wlkp1.q |
|- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
| 15 |
|
wlkp1.s |
|- ( ph -> ( Vtx ` S ) = V ) |
| 16 |
|
wlkp1.l |
|- ( ( ph /\ C = ( P ` N ) ) -> E = { C } ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem6 |
|- ( ph -> A. k e. ( 0 ..^ N ) ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) ) |
| 18 |
10
|
elfvexd |
|- ( ph -> G e. _V ) |
| 19 |
1 2
|
iswlkg |
|- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 21 |
9
|
eqcomi |
|- ( # ` F ) = N |
| 22 |
21
|
oveq2i |
|- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) |
| 23 |
22
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 24 |
23
|
biimpi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 25 |
24
|
3ad2ant3 |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 26 |
20 25
|
biimtrdi |
|- ( ph -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 27 |
8 26
|
mpd |
|- ( ph -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 28 |
|
eqeq12 |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) -> ( ( Q ` k ) = ( Q ` ( k + 1 ) ) <-> ( P ` k ) = ( P ` ( k + 1 ) ) ) ) |
| 29 |
28
|
3adant3 |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( ( Q ` k ) = ( Q ` ( k + 1 ) ) <-> ( P ` k ) = ( P ` ( k + 1 ) ) ) ) |
| 30 |
|
simp3 |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) |
| 31 |
|
simp1 |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( Q ` k ) = ( P ` k ) ) |
| 32 |
31
|
sneqd |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> { ( Q ` k ) } = { ( P ` k ) } ) |
| 33 |
30 32
|
eqeq12d |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) |
| 34 |
|
preq12 |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) -> { ( Q ` k ) , ( Q ` ( k + 1 ) ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 35 |
34
|
3adant3 |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> { ( Q ` k ) , ( Q ` ( k + 1 ) ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 36 |
35 30
|
sseq12d |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 37 |
29 33 36
|
ifpbi123d |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 38 |
37
|
biimprd |
|- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 39 |
38
|
ral2imi |
|- ( A. k e. ( 0 ..^ N ) ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 40 |
17 27 39
|
sylc |
|- ( ph -> A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) |
| 41 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem3 |
|- ( ph -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |
| 43 |
5 10 7
|
3jca |
|- ( ph -> ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) ) |
| 45 |
|
fsnunfv |
|- ( ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) -> ( ( I u. { <. B , E >. } ) ` B ) = E ) |
| 46 |
44 45
|
syl |
|- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( ( I u. { <. B , E >. } ) ` B ) = E ) |
| 47 |
|
fveq2 |
|- ( x = N -> ( Q ` x ) = ( Q ` N ) ) |
| 48 |
|
fveq2 |
|- ( x = N -> ( P ` x ) = ( P ` N ) ) |
| 49 |
47 48
|
eqeq12d |
|- ( x = N -> ( ( Q ` x ) = ( P ` x ) <-> ( Q ` N ) = ( P ` N ) ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem5 |
|- ( ph -> A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) |
| 51 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 52 |
|
lencl |
|- ( F e. Word dom I -> ( # ` F ) e. NN0 ) |
| 53 |
9
|
eleq1i |
|- ( N e. NN0 <-> ( # ` F ) e. NN0 ) |
| 54 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
| 55 |
53 54
|
sylbb1 |
|- ( ( # ` F ) e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 56 |
52 55
|
syl |
|- ( F e. Word dom I -> N e. ( ZZ>= ` 0 ) ) |
| 57 |
8 51 56
|
3syl |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 58 |
57 54
|
sylibr |
|- ( ph -> N e. NN0 ) |
| 59 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 60 |
58 59
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 61 |
49 50 60
|
rspcdva |
|- ( ph -> ( Q ` N ) = ( P ` N ) ) |
| 62 |
14
|
fveq1i |
|- ( Q ` ( N + 1 ) ) = ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) |
| 63 |
|
ovex |
|- ( N + 1 ) e. _V |
| 64 |
1 2 3 4 5 6 7 8 9
|
wlkp1lem1 |
|- ( ph -> -. ( N + 1 ) e. dom P ) |
| 65 |
|
fsnunfv |
|- ( ( ( N + 1 ) e. _V /\ C e. V /\ -. ( N + 1 ) e. dom P ) -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) = C ) |
| 66 |
63 6 64 65
|
mp3an2i |
|- ( ph -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) = C ) |
| 67 |
62 66
|
eqtrid |
|- ( ph -> ( Q ` ( N + 1 ) ) = C ) |
| 68 |
67
|
eqeq2d |
|- ( ph -> ( ( P ` N ) = ( Q ` ( N + 1 ) ) <-> ( P ` N ) = C ) ) |
| 69 |
|
eqcom |
|- ( ( P ` N ) = C <-> C = ( P ` N ) ) |
| 70 |
68 69
|
bitrdi |
|- ( ph -> ( ( P ` N ) = ( Q ` ( N + 1 ) ) <-> C = ( P ` N ) ) ) |
| 71 |
|
sneq |
|- ( C = ( P ` N ) -> { C } = { ( P ` N ) } ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ C = ( P ` N ) ) -> { C } = { ( P ` N ) } ) |
| 73 |
16 72
|
eqtrd |
|- ( ( ph /\ C = ( P ` N ) ) -> E = { ( P ` N ) } ) |
| 74 |
73
|
ex |
|- ( ph -> ( C = ( P ` N ) -> E = { ( P ` N ) } ) ) |
| 75 |
70 74
|
sylbid |
|- ( ph -> ( ( P ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( P ` N ) } ) ) |
| 76 |
|
eqeq1 |
|- ( ( Q ` N ) = ( P ` N ) -> ( ( Q ` N ) = ( Q ` ( N + 1 ) ) <-> ( P ` N ) = ( Q ` ( N + 1 ) ) ) ) |
| 77 |
|
sneq |
|- ( ( Q ` N ) = ( P ` N ) -> { ( Q ` N ) } = { ( P ` N ) } ) |
| 78 |
77
|
eqeq2d |
|- ( ( Q ` N ) = ( P ` N ) -> ( E = { ( Q ` N ) } <-> E = { ( P ` N ) } ) ) |
| 79 |
76 78
|
imbi12d |
|- ( ( Q ` N ) = ( P ` N ) -> ( ( ( Q ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( Q ` N ) } ) <-> ( ( P ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( P ` N ) } ) ) ) |
| 80 |
75 79
|
syl5ibrcom |
|- ( ph -> ( ( Q ` N ) = ( P ` N ) -> ( ( Q ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( Q ` N ) } ) ) ) |
| 81 |
61 80
|
mpd |
|- ( ph -> ( ( Q ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( Q ` N ) } ) ) |
| 82 |
81
|
imp |
|- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> E = { ( Q ` N ) } ) |
| 83 |
42 46 82
|
3eqtrd |
|- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } ) |
| 84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem7 |
|- ( ph -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ -. ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) |
| 86 |
83 85
|
ifpimpda |
|- ( ph -> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) |
| 87 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem2 |
|- ( ph -> ( # ` H ) = ( N + 1 ) ) |
| 88 |
87
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ ( N + 1 ) ) ) |
| 89 |
|
fzosplitsn |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 90 |
57 89
|
syl |
|- ( ph -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 91 |
88 90
|
eqtrd |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 92 |
91
|
raleqdv |
|- ( ph -> ( A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> A. k e. ( ( 0 ..^ N ) u. { N } ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 93 |
|
ralunb |
|- ( A. k e. ( ( 0 ..^ N ) u. { N } ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 94 |
93
|
a1i |
|- ( ph -> ( A. k e. ( ( 0 ..^ N ) u. { N } ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) ) |
| 95 |
9
|
fvexi |
|- N e. _V |
| 96 |
|
wkslem1 |
|- ( k = N -> ( if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) |
| 97 |
96
|
ralsng |
|- ( N e. _V -> ( A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) |
| 98 |
95 97
|
mp1i |
|- ( ph -> ( A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) |
| 99 |
98
|
anbi2d |
|- ( ph -> ( ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) ) |
| 100 |
92 94 99
|
3bitrd |
|- ( ph -> ( A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) ) |
| 101 |
40 86 100
|
mpbir2and |
|- ( ph -> A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) |