Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
|- V = ( Vtx ` G ) |
2 |
|
wlkp1.i |
|- I = ( iEdg ` G ) |
3 |
|
wlkp1.f |
|- ( ph -> Fun I ) |
4 |
|
wlkp1.a |
|- ( ph -> I e. Fin ) |
5 |
|
wlkp1.b |
|- ( ph -> B e. W ) |
6 |
|
wlkp1.c |
|- ( ph -> C e. V ) |
7 |
|
wlkp1.d |
|- ( ph -> -. B e. dom I ) |
8 |
|
wlkp1.w |
|- ( ph -> F ( Walks ` G ) P ) |
9 |
|
wlkp1.n |
|- N = ( # ` F ) |
10 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
11 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
12 |
10 11
|
jca |
|- ( F ( Walks ` G ) P -> ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> V ) ) |
13 |
|
fzp1nel |
|- -. ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) |
14 |
13
|
a1i |
|- ( ( # ` F ) e. NN0 -> -. ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) ) |
15 |
9
|
oveq1i |
|- ( N + 1 ) = ( ( # ` F ) + 1 ) |
16 |
15
|
eleq1i |
|- ( ( N + 1 ) e. ( 0 ... ( # ` F ) ) <-> ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) ) |
17 |
14 16
|
sylnibr |
|- ( ( # ` F ) e. NN0 -> -. ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) |
18 |
|
eleq2 |
|- ( dom P = ( 0 ... ( # ` F ) ) -> ( ( N + 1 ) e. dom P <-> ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) ) |
19 |
18
|
notbid |
|- ( dom P = ( 0 ... ( # ` F ) ) -> ( -. ( N + 1 ) e. dom P <-> -. ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) ) |
20 |
17 19
|
syl5ibrcom |
|- ( ( # ` F ) e. NN0 -> ( dom P = ( 0 ... ( # ` F ) ) -> -. ( N + 1 ) e. dom P ) ) |
21 |
|
fdm |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> dom P = ( 0 ... ( # ` F ) ) ) |
22 |
20 21
|
impel |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> V ) -> -. ( N + 1 ) e. dom P ) |
23 |
8 12 22
|
3syl |
|- ( ph -> -. ( N + 1 ) e. dom P ) |