Metamath Proof Explorer


Theorem wlkp1lem1

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v
|- V = ( Vtx ` G )
wlkp1.i
|- I = ( iEdg ` G )
wlkp1.f
|- ( ph -> Fun I )
wlkp1.a
|- ( ph -> I e. Fin )
wlkp1.b
|- ( ph -> B e. W )
wlkp1.c
|- ( ph -> C e. V )
wlkp1.d
|- ( ph -> -. B e. dom I )
wlkp1.w
|- ( ph -> F ( Walks ` G ) P )
wlkp1.n
|- N = ( # ` F )
Assertion wlkp1lem1
|- ( ph -> -. ( N + 1 ) e. dom P )

Proof

Step Hyp Ref Expression
1 wlkp1.v
 |-  V = ( Vtx ` G )
2 wlkp1.i
 |-  I = ( iEdg ` G )
3 wlkp1.f
 |-  ( ph -> Fun I )
4 wlkp1.a
 |-  ( ph -> I e. Fin )
5 wlkp1.b
 |-  ( ph -> B e. W )
6 wlkp1.c
 |-  ( ph -> C e. V )
7 wlkp1.d
 |-  ( ph -> -. B e. dom I )
8 wlkp1.w
 |-  ( ph -> F ( Walks ` G ) P )
9 wlkp1.n
 |-  N = ( # ` F )
10 wlkcl
 |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 )
11 1 wlkp
 |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V )
12 10 11 jca
 |-  ( F ( Walks ` G ) P -> ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> V ) )
13 fzp1nel
 |-  -. ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) )
14 13 a1i
 |-  ( ( # ` F ) e. NN0 -> -. ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) )
15 9 oveq1i
 |-  ( N + 1 ) = ( ( # ` F ) + 1 )
16 15 eleq1i
 |-  ( ( N + 1 ) e. ( 0 ... ( # ` F ) ) <-> ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) )
17 14 16 sylnibr
 |-  ( ( # ` F ) e. NN0 -> -. ( N + 1 ) e. ( 0 ... ( # ` F ) ) )
18 eleq2
 |-  ( dom P = ( 0 ... ( # ` F ) ) -> ( ( N + 1 ) e. dom P <-> ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) )
19 18 notbid
 |-  ( dom P = ( 0 ... ( # ` F ) ) -> ( -. ( N + 1 ) e. dom P <-> -. ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) )
20 17 19 syl5ibrcom
 |-  ( ( # ` F ) e. NN0 -> ( dom P = ( 0 ... ( # ` F ) ) -> -. ( N + 1 ) e. dom P ) )
21 fdm
 |-  ( P : ( 0 ... ( # ` F ) ) --> V -> dom P = ( 0 ... ( # ` F ) ) )
22 20 21 impel
 |-  ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> V ) -> -. ( N + 1 ) e. dom P )
23 8 12 22 3syl
 |-  ( ph -> -. ( N + 1 ) e. dom P )