Metamath Proof Explorer


Theorem wlkp1lem8

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v V=VtxG
wlkp1.i I=iEdgG
wlkp1.f φFunI
wlkp1.a φIFin
wlkp1.b φBW
wlkp1.c φCV
wlkp1.d φ¬BdomI
wlkp1.w φFWalksGP
wlkp1.n N=F
wlkp1.e φEEdgG
wlkp1.x φPNCE
wlkp1.u φiEdgS=IBE
wlkp1.h H=FNB
wlkp1.q Q=PN+1C
wlkp1.s φVtxS=V
wlkp1.l φC=PNE=C
Assertion wlkp1lem8 φk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk

Proof

Step Hyp Ref Expression
1 wlkp1.v V=VtxG
2 wlkp1.i I=iEdgG
3 wlkp1.f φFunI
4 wlkp1.a φIFin
5 wlkp1.b φBW
6 wlkp1.c φCV
7 wlkp1.d φ¬BdomI
8 wlkp1.w φFWalksGP
9 wlkp1.n N=F
10 wlkp1.e φEEdgG
11 wlkp1.x φPNCE
12 wlkp1.u φiEdgS=IBE
13 wlkp1.h H=FNB
14 wlkp1.q Q=PN+1C
15 wlkp1.s φVtxS=V
16 wlkp1.l φC=PNE=C
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem6 φk0..^NQk=PkQk+1=Pk+1iEdgSHk=IFk
18 10 elfvexd φGV
19 1 2 iswlkg GVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
20 18 19 syl φFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
21 9 eqcomi F=N
22 21 oveq2i 0..^F=0..^N
23 22 raleqi k0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^Nif-Pk=Pk+1IFk=PkPkPk+1IFk
24 23 biimpi k0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^Nif-Pk=Pk+1IFk=PkPkPk+1IFk
25 24 3ad2ant3 FWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^Nif-Pk=Pk+1IFk=PkPkPk+1IFk
26 20 25 syl6bi φFWalksGPk0..^Nif-Pk=Pk+1IFk=PkPkPk+1IFk
27 8 26 mpd φk0..^Nif-Pk=Pk+1IFk=PkPkPk+1IFk
28 eqeq12 Qk=PkQk+1=Pk+1Qk=Qk+1Pk=Pk+1
29 28 3adant3 Qk=PkQk+1=Pk+1iEdgSHk=IFkQk=Qk+1Pk=Pk+1
30 simp3 Qk=PkQk+1=Pk+1iEdgSHk=IFkiEdgSHk=IFk
31 simp1 Qk=PkQk+1=Pk+1iEdgSHk=IFkQk=Pk
32 31 sneqd Qk=PkQk+1=Pk+1iEdgSHk=IFkQk=Pk
33 30 32 eqeq12d Qk=PkQk+1=Pk+1iEdgSHk=IFkiEdgSHk=QkIFk=Pk
34 preq12 Qk=PkQk+1=Pk+1QkQk+1=PkPk+1
35 34 3adant3 Qk=PkQk+1=Pk+1iEdgSHk=IFkQkQk+1=PkPk+1
36 35 30 sseq12d Qk=PkQk+1=Pk+1iEdgSHk=IFkQkQk+1iEdgSHkPkPk+1IFk
37 29 33 36 ifpbi123d Qk=PkQk+1=Pk+1iEdgSHk=IFkif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkif-Pk=Pk+1IFk=PkPkPk+1IFk
38 37 biimprd Qk=PkQk+1=Pk+1iEdgSHk=IFkif-Pk=Pk+1IFk=PkPkPk+1IFkif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
39 38 ral2imi k0..^NQk=PkQk+1=Pk+1iEdgSHk=IFkk0..^Nif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
40 17 27 39 sylc φk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
41 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem3 φiEdgSHN=IBEB
42 41 adantr φQN=QN+1iEdgSHN=IBEB
43 5 10 7 3jca φBWEEdgG¬BdomI
44 43 adantr φQN=QN+1BWEEdgG¬BdomI
45 fsnunfv BWEEdgG¬BdomIIBEB=E
46 44 45 syl φQN=QN+1IBEB=E
47 fveq2 x=NQx=QN
48 fveq2 x=NPx=PN
49 47 48 eqeq12d x=NQx=PxQN=PN
50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem5 φx0NQx=Px
51 2 wlkf FWalksGPFWorddomI
52 lencl FWorddomIF0
53 9 eleq1i N0F0
54 elnn0uz N0N0
55 53 54 sylbb1 F0N0
56 52 55 syl FWorddomIN0
57 8 51 56 3syl φN0
58 57 54 sylibr φN0
59 nn0fz0 N0N0N
60 58 59 sylib φN0N
61 49 50 60 rspcdva φQN=PN
62 14 fveq1i QN+1=PN+1CN+1
63 ovex N+1V
64 1 2 3 4 5 6 7 8 9 wlkp1lem1 φ¬N+1domP
65 fsnunfv N+1VCV¬N+1domPPN+1CN+1=C
66 63 6 64 65 mp3an2i φPN+1CN+1=C
67 62 66 eqtrid φQN+1=C
68 67 eqeq2d φPN=QN+1PN=C
69 eqcom PN=CC=PN
70 68 69 bitrdi φPN=QN+1C=PN
71 sneq C=PNC=PN
72 71 adantl φC=PNC=PN
73 16 72 eqtrd φC=PNE=PN
74 73 ex φC=PNE=PN
75 70 74 sylbid φPN=QN+1E=PN
76 eqeq1 QN=PNQN=QN+1PN=QN+1
77 sneq QN=PNQN=PN
78 77 eqeq2d QN=PNE=QNE=PN
79 76 78 imbi12d QN=PNQN=QN+1E=QNPN=QN+1E=PN
80 75 79 syl5ibrcom φQN=PNQN=QN+1E=QN
81 61 80 mpd φQN=QN+1E=QN
82 81 imp φQN=QN+1E=QN
83 42 46 82 3eqtrd φQN=QN+1iEdgSHN=QN
84 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem7 φQNQN+1iEdgSHN
85 84 adantr φ¬QN=QN+1QNQN+1iEdgSHN
86 83 85 ifpimpda φif-QN=QN+1iEdgSHN=QNQNQN+1iEdgSHN
87 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem2 φH=N+1
88 87 oveq2d φ0..^H=0..^N+1
89 fzosplitsn N00..^N+1=0..^NN
90 57 89 syl φ0..^N+1=0..^NN
91 88 90 eqtrd φ0..^H=0..^NN
92 91 raleqdv φk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkk0..^NNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
93 ralunb k0..^NNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkkNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
94 93 a1i φk0..^NNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkkNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
95 9 fvexi NV
96 wkslem1 k=Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkif-QN=QN+1iEdgSHN=QNQNQN+1iEdgSHN
97 96 ralsng NVkNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkif-QN=QN+1iEdgSHN=QNQNQN+1iEdgSHN
98 95 97 mp1i φkNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkif-QN=QN+1iEdgSHN=QNQNQN+1iEdgSHN
99 98 anbi2d φk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkkNif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkif-QN=QN+1iEdgSHN=QNQNQN+1iEdgSHN
100 92 94 99 3bitrd φk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkk0..^Nif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHkif-QN=QN+1iEdgSHN=QNQNQN+1iEdgSHN
101 40 86 100 mpbir2and φk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk