Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wlkp1.v | |
|
wlkp1.i | |
||
wlkp1.f | |
||
wlkp1.a | |
||
wlkp1.b | |
||
wlkp1.c | |
||
wlkp1.d | |
||
wlkp1.w | |
||
wlkp1.n | |
||
wlkp1.e | |
||
wlkp1.x | |
||
wlkp1.u | |
||
wlkp1.h | |
||
wlkp1.q | |
||
wlkp1.s | |
||
Assertion | wlkp1lem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.v | |
|
2 | wlkp1.i | |
|
3 | wlkp1.f | |
|
4 | wlkp1.a | |
|
5 | wlkp1.b | |
|
6 | wlkp1.c | |
|
7 | wlkp1.d | |
|
8 | wlkp1.w | |
|
9 | wlkp1.n | |
|
10 | wlkp1.e | |
|
11 | wlkp1.x | |
|
12 | wlkp1.u | |
|
13 | wlkp1.h | |
|
14 | wlkp1.q | |
|
15 | wlkp1.s | |
|
16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | |
17 | elfzofz | |
|
18 | 17 | adantl | |
19 | fveq2 | |
|
20 | fveq2 | |
|
21 | 19 20 | eqeq12d | |
22 | 21 | rspcv | |
23 | 18 22 | syl | |
24 | 23 | imp | |
25 | fzofzp1 | |
|
26 | 25 | adantl | |
27 | fveq2 | |
|
28 | fveq2 | |
|
29 | 27 28 | eqeq12d | |
30 | 29 | rspcv | |
31 | 26 30 | syl | |
32 | 31 | imp | |
33 | 12 | adantr | |
34 | 13 | fveq1i | |
35 | fzonel | |
|
36 | eleq1 | |
|
37 | 35 36 | mtbii | |
38 | 37 | a1i | |
39 | 38 | con2d | |
40 | 39 | imp | |
41 | 40 | neqned | |
42 | fvunsn | |
|
43 | 41 42 | syl | |
44 | 34 43 | eqtrid | |
45 | 33 44 | fveq12d | |
46 | 9 | oveq2i | |
47 | 46 | eleq2i | |
48 | 2 | wlkf | |
49 | 8 48 | syl | |
50 | wrdsymbcl | |
|
51 | 50 | ex | |
52 | 49 51 | syl | |
53 | 47 52 | biimtrid | |
54 | 53 | imp | |
55 | eleq1 | |
|
56 | 54 55 | syl5ibrcom | |
57 | 56 | con3d | |
58 | 57 | ex | |
59 | 7 58 | mpid | |
60 | 59 | imp | |
61 | 60 | neqned | |
62 | fvunsn | |
|
63 | 61 62 | syl | |
64 | 45 63 | eqtrd | |
65 | 64 | adantr | |
66 | 24 32 65 | 3jca | |
67 | 16 66 | mpidan | |
68 | 67 | ralrimiva | |