Metamath Proof Explorer


Theorem wlkp1lem6

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v V=VtxG
wlkp1.i I=iEdgG
wlkp1.f φFunI
wlkp1.a φIFin
wlkp1.b φBW
wlkp1.c φCV
wlkp1.d φ¬BdomI
wlkp1.w φFWalksGP
wlkp1.n N=F
wlkp1.e φEEdgG
wlkp1.x φPNCE
wlkp1.u φiEdgS=IBE
wlkp1.h H=FNB
wlkp1.q Q=PN+1C
wlkp1.s φVtxS=V
Assertion wlkp1lem6 φk0..^NQk=PkQk+1=Pk+1iEdgSHk=IFk

Proof

Step Hyp Ref Expression
1 wlkp1.v V=VtxG
2 wlkp1.i I=iEdgG
3 wlkp1.f φFunI
4 wlkp1.a φIFin
5 wlkp1.b φBW
6 wlkp1.c φCV
7 wlkp1.d φ¬BdomI
8 wlkp1.w φFWalksGP
9 wlkp1.n N=F
10 wlkp1.e φEEdgG
11 wlkp1.x φPNCE
12 wlkp1.u φiEdgS=IBE
13 wlkp1.h H=FNB
14 wlkp1.q Q=PN+1C
15 wlkp1.s φVtxS=V
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem5 φx0NQx=Px
17 elfzofz k0..^Nk0N
18 17 adantl φk0..^Nk0N
19 fveq2 x=kQx=Qk
20 fveq2 x=kPx=Pk
21 19 20 eqeq12d x=kQx=PxQk=Pk
22 21 rspcv k0Nx0NQx=PxQk=Pk
23 18 22 syl φk0..^Nx0NQx=PxQk=Pk
24 23 imp φk0..^Nx0NQx=PxQk=Pk
25 fzofzp1 k0..^Nk+10N
26 25 adantl φk0..^Nk+10N
27 fveq2 x=k+1Qx=Qk+1
28 fveq2 x=k+1Px=Pk+1
29 27 28 eqeq12d x=k+1Qx=PxQk+1=Pk+1
30 29 rspcv k+10Nx0NQx=PxQk+1=Pk+1
31 26 30 syl φk0..^Nx0NQx=PxQk+1=Pk+1
32 31 imp φk0..^Nx0NQx=PxQk+1=Pk+1
33 12 adantr φk0..^NiEdgS=IBE
34 13 fveq1i Hk=FNBk
35 fzonel ¬N0..^N
36 eleq1 N=kN0..^Nk0..^N
37 35 36 mtbii N=k¬k0..^N
38 37 a1i φN=k¬k0..^N
39 38 con2d φk0..^N¬N=k
40 39 imp φk0..^N¬N=k
41 40 neqned φk0..^NNk
42 fvunsn NkFNBk=Fk
43 41 42 syl φk0..^NFNBk=Fk
44 34 43 eqtrid φk0..^NHk=Fk
45 33 44 fveq12d φk0..^NiEdgSHk=IBEFk
46 9 oveq2i 0..^N=0..^F
47 46 eleq2i k0..^Nk0..^F
48 2 wlkf FWalksGPFWorddomI
49 8 48 syl φFWorddomI
50 wrdsymbcl FWorddomIk0..^FFkdomI
51 50 ex FWorddomIk0..^FFkdomI
52 49 51 syl φk0..^FFkdomI
53 47 52 biimtrid φk0..^NFkdomI
54 53 imp φk0..^NFkdomI
55 eleq1 B=FkBdomIFkdomI
56 54 55 syl5ibrcom φk0..^NB=FkBdomI
57 56 con3d φk0..^N¬BdomI¬B=Fk
58 57 ex φk0..^N¬BdomI¬B=Fk
59 7 58 mpid φk0..^N¬B=Fk
60 59 imp φk0..^N¬B=Fk
61 60 neqned φk0..^NBFk
62 fvunsn BFkIBEFk=IFk
63 61 62 syl φk0..^NIBEFk=IFk
64 45 63 eqtrd φk0..^NiEdgSHk=IFk
65 64 adantr φk0..^Nx0NQx=PxiEdgSHk=IFk
66 24 32 65 3jca φk0..^Nx0NQx=PxQk=PkQk+1=Pk+1iEdgSHk=IFk
67 16 66 mpidan φk0..^NQk=PkQk+1=Pk+1iEdgSHk=IFk
68 67 ralrimiva φk0..^NQk=PkQk+1=Pk+1iEdgSHk=IFk