| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
|
| 2 |
|
wlkp1.i |
|
| 3 |
|
wlkp1.f |
|
| 4 |
|
wlkp1.a |
|
| 5 |
|
wlkp1.b |
|
| 6 |
|
wlkp1.c |
|
| 7 |
|
wlkp1.d |
|
| 8 |
|
wlkp1.w |
|
| 9 |
|
wlkp1.n |
|
| 10 |
|
wlkp1.e |
|
| 11 |
|
wlkp1.x |
|
| 12 |
|
wlkp1.u |
|
| 13 |
|
wlkp1.h |
|
| 14 |
|
wlkp1.q |
|
| 15 |
|
wlkp1.s |
|
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem5 |
|
| 17 |
|
elfzofz |
|
| 18 |
17
|
adantl |
|
| 19 |
|
fveq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
19 20
|
eqeq12d |
|
| 22 |
21
|
rspcv |
|
| 23 |
18 22
|
syl |
|
| 24 |
23
|
imp |
|
| 25 |
|
fzofzp1 |
|
| 26 |
25
|
adantl |
|
| 27 |
|
fveq2 |
|
| 28 |
|
fveq2 |
|
| 29 |
27 28
|
eqeq12d |
|
| 30 |
29
|
rspcv |
|
| 31 |
26 30
|
syl |
|
| 32 |
31
|
imp |
|
| 33 |
12
|
adantr |
|
| 34 |
13
|
fveq1i |
|
| 35 |
|
fzonel |
|
| 36 |
|
eleq1 |
|
| 37 |
35 36
|
mtbii |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
con2d |
|
| 40 |
39
|
imp |
|
| 41 |
40
|
neqned |
|
| 42 |
|
fvunsn |
|
| 43 |
41 42
|
syl |
|
| 44 |
34 43
|
eqtrid |
|
| 45 |
33 44
|
fveq12d |
|
| 46 |
9
|
oveq2i |
|
| 47 |
46
|
eleq2i |
|
| 48 |
2
|
wlkf |
|
| 49 |
8 48
|
syl |
|
| 50 |
|
wrdsymbcl |
|
| 51 |
50
|
ex |
|
| 52 |
49 51
|
syl |
|
| 53 |
47 52
|
biimtrid |
|
| 54 |
53
|
imp |
|
| 55 |
|
eleq1 |
|
| 56 |
54 55
|
syl5ibrcom |
|
| 57 |
56
|
con3d |
|
| 58 |
57
|
ex |
|
| 59 |
7 58
|
mpid |
|
| 60 |
59
|
imp |
|
| 61 |
60
|
neqned |
|
| 62 |
|
fvunsn |
|
| 63 |
61 62
|
syl |
|
| 64 |
45 63
|
eqtrd |
|
| 65 |
64
|
adantr |
|
| 66 |
24 32 65
|
3jca |
|
| 67 |
16 66
|
mpidan |
|
| 68 |
67
|
ralrimiva |
|