Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
|
2 |
|
wlkp1.i |
|
3 |
|
wlkp1.f |
|
4 |
|
wlkp1.a |
|
5 |
|
wlkp1.b |
|
6 |
|
wlkp1.c |
|
7 |
|
wlkp1.d |
|
8 |
|
wlkp1.w |
|
9 |
|
wlkp1.n |
|
10 |
|
wlkp1.e |
|
11 |
|
wlkp1.x |
|
12 |
|
wlkp1.u |
|
13 |
|
wlkp1.h |
|
14 |
|
wlkp1.q |
|
15 |
|
wlkp1.s |
|
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem5 |
|
17 |
|
elfzofz |
|
18 |
17
|
adantl |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
eqeq12d |
|
22 |
21
|
rspcv |
|
23 |
18 22
|
syl |
|
24 |
23
|
imp |
|
25 |
|
fzofzp1 |
|
26 |
25
|
adantl |
|
27 |
|
fveq2 |
|
28 |
|
fveq2 |
|
29 |
27 28
|
eqeq12d |
|
30 |
29
|
rspcv |
|
31 |
26 30
|
syl |
|
32 |
31
|
imp |
|
33 |
12
|
adantr |
|
34 |
13
|
fveq1i |
|
35 |
|
fzonel |
|
36 |
|
eleq1 |
|
37 |
35 36
|
mtbii |
|
38 |
37
|
a1i |
|
39 |
38
|
con2d |
|
40 |
39
|
imp |
|
41 |
40
|
neqned |
|
42 |
|
fvunsn |
|
43 |
41 42
|
syl |
|
44 |
34 43
|
eqtrid |
|
45 |
33 44
|
fveq12d |
|
46 |
9
|
oveq2i |
|
47 |
46
|
eleq2i |
|
48 |
2
|
wlkf |
|
49 |
8 48
|
syl |
|
50 |
|
wrdsymbcl |
|
51 |
50
|
ex |
|
52 |
49 51
|
syl |
|
53 |
47 52
|
syl5bi |
|
54 |
53
|
imp |
|
55 |
|
eleq1 |
|
56 |
54 55
|
syl5ibrcom |
|
57 |
56
|
con3d |
|
58 |
57
|
ex |
|
59 |
7 58
|
mpid |
|
60 |
59
|
imp |
|
61 |
60
|
neqned |
|
62 |
|
fvunsn |
|
63 |
61 62
|
syl |
|
64 |
45 63
|
eqtrd |
|
65 |
64
|
adantr |
|
66 |
24 32 65
|
3jca |
|
67 |
16 66
|
mpidan |
|
68 |
67
|
ralrimiva |
|