| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
| 8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
| 12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
| 14 |
|
wlkp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
| 15 |
|
wlkp1.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 17 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) ) |
| 22 |
21
|
rspcv |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) ) |
| 23 |
18 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 25 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 29 |
27 28
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 |
29
|
rspcv |
⊢ ( ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 31 |
26 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 33 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 34 |
13
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑘 ) |
| 35 |
|
fzonel |
⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) |
| 36 |
|
eleq1 |
⊢ ( 𝑁 = 𝑘 → ( 𝑁 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 37 |
35 36
|
mtbii |
⊢ ( 𝑁 = 𝑘 → ¬ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → ( 𝑁 = 𝑘 → ¬ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 39 |
38
|
con2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = 𝑘 ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 𝑁 = 𝑘 ) |
| 41 |
40
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ≠ 𝑘 ) |
| 42 |
|
fvunsn |
⊢ ( 𝑁 ≠ 𝑘 → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 43 |
41 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 44 |
34 43
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 45 |
33 44
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 46 |
9
|
oveq2i |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 47 |
46
|
eleq2i |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 48 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 49 |
8 48
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 50 |
|
wrdsymbcl |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
| 51 |
50
|
ex |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 52 |
49 51
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 53 |
47 52
|
biimtrid |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 54 |
53
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
| 55 |
|
eleq1 |
⊢ ( 𝐵 = ( 𝐹 ‘ 𝑘 ) → ( 𝐵 ∈ dom 𝐼 ↔ ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 56 |
54 55
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 = ( 𝐹 ‘ 𝑘 ) → 𝐵 ∈ dom 𝐼 ) ) |
| 57 |
56
|
con3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 58 |
57
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 59 |
7 58
|
mpid |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 60 |
59
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) |
| 61 |
60
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ≠ ( 𝐹 ‘ 𝑘 ) ) |
| 62 |
|
fvunsn |
⊢ ( 𝐵 ≠ ( 𝐹 ‘ 𝑘 ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 64 |
45 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 66 |
24 32 65
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 67 |
16 66
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 68 |
67
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |