| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
| 8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
| 12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
| 14 |
|
wlkp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
| 15 |
|
wlkp1.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑁 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem5 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 20 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 21 |
9
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 22 |
21
|
eleq1i |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) |
| 23 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 24 |
22 23
|
sylbb |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 25 |
8 20 24
|
3syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 26 |
18 19 25
|
rspcdva |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 27 |
14
|
fveq1i |
⊢ ( 𝑄 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) |
| 28 |
|
ovex |
⊢ ( 𝑁 + 1 ) ∈ V |
| 29 |
1 2 3 4 5 6 7 8 9
|
wlkp1lem1 |
⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| 30 |
|
fsnunfv |
⊢ ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 31 |
28 6 29 30
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 32 |
27 31
|
eqtrid |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 33 |
26 32
|
preq12d |
⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ) |
| 34 |
|
fsnunfv |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) |
| 35 |
5 10 7 34
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) |
| 36 |
11 33 35
|
3sstr4d |
⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| 37 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem3 |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| 38 |
36 37
|
sseqtrrd |
⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |