Metamath Proof Explorer


Theorem wlkp1lem3

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v 𝑉 = ( Vtx ‘ 𝐺 )
wlkp1.i 𝐼 = ( iEdg ‘ 𝐺 )
wlkp1.f ( 𝜑 → Fun 𝐼 )
wlkp1.a ( 𝜑𝐼 ∈ Fin )
wlkp1.b ( 𝜑𝐵𝑊 )
wlkp1.c ( 𝜑𝐶𝑉 )
wlkp1.d ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 )
wlkp1.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
wlkp1.n 𝑁 = ( ♯ ‘ 𝐹 )
wlkp1.e ( 𝜑𝐸 ∈ ( Edg ‘ 𝐺 ) )
wlkp1.x ( 𝜑 → { ( 𝑃𝑁 ) , 𝐶 } ⊆ 𝐸 )
wlkp1.u ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) )
wlkp1.h 𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } )
Assertion wlkp1lem3 ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 wlkp1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 wlkp1.i 𝐼 = ( iEdg ‘ 𝐺 )
3 wlkp1.f ( 𝜑 → Fun 𝐼 )
4 wlkp1.a ( 𝜑𝐼 ∈ Fin )
5 wlkp1.b ( 𝜑𝐵𝑊 )
6 wlkp1.c ( 𝜑𝐶𝑉 )
7 wlkp1.d ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 )
8 wlkp1.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
9 wlkp1.n 𝑁 = ( ♯ ‘ 𝐹 )
10 wlkp1.e ( 𝜑𝐸 ∈ ( Edg ‘ 𝐺 ) )
11 wlkp1.x ( 𝜑 → { ( 𝑃𝑁 ) , 𝐶 } ⊆ 𝐸 )
12 wlkp1.u ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) )
13 wlkp1.h 𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } )
14 13 a1i ( 𝜑𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } ) )
15 14 fveq1d ( 𝜑 → ( 𝐻𝑁 ) = ( ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } ) ‘ 𝑁 ) )
16 9 fvexi 𝑁 ∈ V
17 2 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
18 lencl ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
19 wrddm ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
20 fzonel ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) )
21 9 a1i ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 = ( ♯ ‘ 𝐹 ) )
22 simpr ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
23 21 22 eleq12d ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ∈ dom 𝐹 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )
24 20 23 mtbiri ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ 𝑁 ∈ dom 𝐹 )
25 18 19 24 syl2anc ( 𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹 )
26 8 17 25 3syl ( 𝜑 → ¬ 𝑁 ∈ dom 𝐹 )
27 fsnunfv ( ( 𝑁 ∈ V ∧ 𝐵𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹 ) → ( ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } ) ‘ 𝑁 ) = 𝐵 )
28 16 5 26 27 mp3an2i ( 𝜑 → ( ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } ) ‘ 𝑁 ) = 𝐵 )
29 15 28 eqtrd ( 𝜑 → ( 𝐻𝑁 ) = 𝐵 )
30 12 29 fveq12d ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) )