| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
| 8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
| 12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
| 14 |
|
wlkp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
| 15 |
|
wlkp1.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 16 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 17 |
16
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 18 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 19 |
18
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 20 |
17 19
|
jca |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 21 |
8 20
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 22 |
6 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( Vtx ‘ 𝑆 ) ) |
| 23 |
22
|
elfvexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝑆 ∈ V ) |
| 25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 26 |
|
snex |
⊢ { 〈 𝑁 , 𝐵 〉 } ∈ V |
| 27 |
|
unexg |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ { 〈 𝑁 , 𝐵 〉 } ∈ V ) → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ∈ V ) |
| 28 |
25 26 27
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ∈ V ) |
| 29 |
13 28
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝐻 ∈ V ) |
| 30 |
|
ovex |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∈ V |
| 31 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
| 32 |
30 31
|
fpm |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 ∈ ( ( Vtx ‘ 𝐺 ) ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 33 |
32
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝑃 ∈ ( ( Vtx ‘ 𝐺 ) ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 34 |
|
snex |
⊢ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ∈ V |
| 35 |
|
unexg |
⊢ ( ( 𝑃 ∈ ( ( Vtx ‘ 𝐺 ) ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ∈ V ) → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ∈ V ) |
| 36 |
33 34 35
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ∈ V ) |
| 37 |
14 36
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝑄 ∈ V ) |
| 38 |
24 29 37
|
3jca |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| 39 |
21 38
|
mpdan |
⊢ ( 𝜑 → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |