Metamath Proof Explorer


Theorem wlkp1lem7

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v V=VtxG
wlkp1.i I=iEdgG
wlkp1.f φFunI
wlkp1.a φIFin
wlkp1.b φBW
wlkp1.c φCV
wlkp1.d φ¬BdomI
wlkp1.w φFWalksGP
wlkp1.n N=F
wlkp1.e φEEdgG
wlkp1.x φPNCE
wlkp1.u φiEdgS=IBE
wlkp1.h H=FNB
wlkp1.q Q=PN+1C
wlkp1.s φVtxS=V
Assertion wlkp1lem7 φQNQN+1iEdgSHN

Proof

Step Hyp Ref Expression
1 wlkp1.v V=VtxG
2 wlkp1.i I=iEdgG
3 wlkp1.f φFunI
4 wlkp1.a φIFin
5 wlkp1.b φBW
6 wlkp1.c φCV
7 wlkp1.d φ¬BdomI
8 wlkp1.w φFWalksGP
9 wlkp1.n N=F
10 wlkp1.e φEEdgG
11 wlkp1.x φPNCE
12 wlkp1.u φiEdgS=IBE
13 wlkp1.h H=FNB
14 wlkp1.q Q=PN+1C
15 wlkp1.s φVtxS=V
16 fveq2 k=NQk=QN
17 fveq2 k=NPk=PN
18 16 17 eqeq12d k=NQk=PkQN=PN
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem5 φk0NQk=Pk
20 wlkcl FWalksGPF0
21 9 eqcomi F=N
22 21 eleq1i F0N0
23 nn0fz0 N0N0N
24 22 23 sylbb F0N0N
25 8 20 24 3syl φN0N
26 18 19 25 rspcdva φQN=PN
27 14 fveq1i QN+1=PN+1CN+1
28 ovex N+1V
29 1 2 3 4 5 6 7 8 9 wlkp1lem1 φ¬N+1domP
30 fsnunfv N+1VCV¬N+1domPPN+1CN+1=C
31 28 6 29 30 mp3an2i φPN+1CN+1=C
32 27 31 eqtrid φQN+1=C
33 26 32 preq12d φQNQN+1=PNC
34 fsnunfv BWEEdgG¬BdomIIBEB=E
35 5 10 7 34 syl3anc φIBEB=E
36 11 33 35 3sstr4d φQNQN+1IBEB
37 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem3 φiEdgSHN=IBEB
38 36 37 sseqtrrd φQNQN+1iEdgSHN