Step |
Hyp |
Ref |
Expression |
1 |
|
sseq2 |
|- ( A = B -> ( x C_ A <-> x C_ B ) ) |
2 |
1
|
3ad2ant2 |
|- ( ( R = S /\ A = B /\ F = G ) -> ( x C_ A <-> x C_ B ) ) |
3 |
|
predeq1 |
|- ( R = S -> Pred ( R , A , y ) = Pred ( S , A , y ) ) |
4 |
|
predeq2 |
|- ( A = B -> Pred ( S , A , y ) = Pred ( S , B , y ) ) |
5 |
3 4
|
sylan9eq |
|- ( ( R = S /\ A = B ) -> Pred ( R , A , y ) = Pred ( S , B , y ) ) |
6 |
5
|
3adant3 |
|- ( ( R = S /\ A = B /\ F = G ) -> Pred ( R , A , y ) = Pred ( S , B , y ) ) |
7 |
6
|
sseq1d |
|- ( ( R = S /\ A = B /\ F = G ) -> ( Pred ( R , A , y ) C_ x <-> Pred ( S , B , y ) C_ x ) ) |
8 |
7
|
ralbidv |
|- ( ( R = S /\ A = B /\ F = G ) -> ( A. y e. x Pred ( R , A , y ) C_ x <-> A. y e. x Pred ( S , B , y ) C_ x ) ) |
9 |
2 8
|
anbi12d |
|- ( ( R = S /\ A = B /\ F = G ) -> ( ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) <-> ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) ) ) |
10 |
|
simp3 |
|- ( ( R = S /\ A = B /\ F = G ) -> F = G ) |
11 |
5
|
reseq2d |
|- ( ( R = S /\ A = B ) -> ( f |` Pred ( R , A , y ) ) = ( f |` Pred ( S , B , y ) ) ) |
12 |
11
|
3adant3 |
|- ( ( R = S /\ A = B /\ F = G ) -> ( f |` Pred ( R , A , y ) ) = ( f |` Pred ( S , B , y ) ) ) |
13 |
10 12
|
fveq12d |
|- ( ( R = S /\ A = B /\ F = G ) -> ( F ` ( f |` Pred ( R , A , y ) ) ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) |
14 |
13
|
eqeq2d |
|- ( ( R = S /\ A = B /\ F = G ) -> ( ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) <-> ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) ) |
15 |
14
|
ralbidv |
|- ( ( R = S /\ A = B /\ F = G ) -> ( A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) <-> A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) ) |
16 |
9 15
|
3anbi23d |
|- ( ( R = S /\ A = B /\ F = G ) -> ( ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) <-> ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) ) ) |
17 |
16
|
exbidv |
|- ( ( R = S /\ A = B /\ F = G ) -> ( E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) <-> E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) ) ) |
18 |
17
|
abbidv |
|- ( ( R = S /\ A = B /\ F = G ) -> { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) } ) |
19 |
18
|
unieqd |
|- ( ( R = S /\ A = B /\ F = G ) -> U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } = U. { f | E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) } ) |
20 |
|
df-wrecs |
|- wrecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |
21 |
|
df-wrecs |
|- wrecs ( S , B , G ) = U. { f | E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( S , B , y ) ) ) ) } |
22 |
19 20 21
|
3eqtr4g |
|- ( ( R = S /\ A = B /\ F = G ) -> wrecs ( R , A , F ) = wrecs ( S , B , G ) ) |