Metamath Proof Explorer


Theorem wrecseq123

Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Assertion wrecseq123 R=SA=BF=GwrecsRAF=wrecsSBG

Proof

Step Hyp Ref Expression
1 coeq1 F=GF2nd=G2nd
2 frecseq123 R=SA=BF2nd=G2ndfrecsRAF2nd=frecsSBG2nd
3 1 2 syl3an3 R=SA=BF=GfrecsRAF2nd=frecsSBG2nd
4 df-wrecs wrecsRAF=frecsRAF2nd
5 df-wrecs wrecsSBG=frecsSBG2nd
6 3 4 5 3eqtr4g R=SA=BF=GwrecsRAF=wrecsSBG